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A B S T R A C T

Much of metapopulation theory assumes that the persistence of individual populations in a

metapopulation, and persistence of the metapopulation as a whole, is best modeled by the

area of habitat patches and their isolation. Estimates of isolation typically include a mea-

sure of geographic distance and a measure of either population size or patch area. This

‘‘area and isolation paradigm’’ assumes a functional relationship between the area of a

patch and its extinction probability, and between isolation of a patch and its colonization

probability. Although these assumptions are fundamental to use of incidence function

models of metapopulation dynamics, the assumptions have been validated in only a small

number of studies. We tested the ability of area and isolation to predict extinction and col-

onization patterns using multiple-year occupancy data for 10 species from three taxonomic

groups (butterflies, amphibians, and birds). We examined 13 potential models of metapop-

ulation dynamics. All models included four basic parameters: occupancy during the first

year of the survey, probability of extinction, probability of colonization, and single-visit

detection probability. In eight models, each parameter was either constant or time-depen-

dent. Five models included a patch-level covariate of extinction probability (patch area or

population size), colonization probability (connectivity, the inverse of isolation), or both.

Extinction patterns generally were predicted more effectively as a function of local

population size than as a function of patch area, a constant probability of extinction, or

a time-dependent probability of extinction. In most cases, inclusion of connectivity as a

patch-level covariate did not improve predictions of colonization patterns. We estimated

single-visit detection probabilities for all species in our analyses, thus providing evi-

dence-based guidelines for the refinement of future monitoring protocols.
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patches in a metapopulation can be determined on the basis
1. Introduction

Many species naturally occur as ephemeral local populations

in patches of habitat distributed across a landscape matrix

that is otherwise unsuitable for the species (Levins, 1969).

When such networks are maintained through dispersal and

colonization, they are referred to as metapopulations (Hanski,

1998; Hanski and Gaggiotti, 2004). Evidence of metapopulation

structure has been found in multiple taxonomic groups,

among which butterflies (Dennis and Eales, 1999; Fleishman

et al., 2002; Hanski and Gaggiotti, 2004), amphibians (Sjö-

gren-Gulve and Ray, 1996; Pope et al., 2000; Vos et al., 2000;

Marsh and Trenham, 2001), and birds (Erwin et al., 1998; Akça-

kaya et al., 2004) provide well-studied examples.

The conservation of imperiled species that exhibit meta-

population structure is becoming increasingly challenging on

human-dominated landscapes. In these situations, patches

of habitat are being lost, fragmented, and separated (isolated)

as both the patches and the matrix are transformed by various

land uses (McCullough, 1996; Akçakaya and Sjögren-Gulve,

2000; Beissinger and McCullough, 2002). A number of tools

have been used to assess probabilities of metapopulation per-

sistence, or to explore alternative patch-based strategies to

conserve metapopulations. Patch occupancy models, for

example, predict the number or proportion of patches in a

metapopulation that are occupied by the focal species at a gi-

ven time step. Many patch occupancy models also estimate

probabilities of extinction and colonization for each patch;

these probabilities can be incorporated into simulations to

predict metapopulation persistence over time. Patch occu-

pancy models are popular among researchers and practitio-

ners because their data requirements are relatively modest:

the location and size of habitat patches and whether the spe-

cies is present or absent in each patch for at least one complete

inventory or time step (Hanski, 1994; Sjögren-Gulve, 1994; Sjö-

gren-Gulve and Ray, 1996; Vos et al., 2000; Pellet et al., 2006).

Patch occupancy models are derived from the area and iso-

lation paradigm. This paradigm assumes that the presence

and survival of individual populations in a metapopulation,

and the persistence of the metapopulation as a whole, is best

modeled by the area of habitat patches and the isolation of

patches (Hanski, 1994, 1998, 1999; Moilanen, 1999; Hanski

and Ovaskainen, 2000; Hanski and Gaggiotti, 2004; Ovaskai-

nen and Hanski, 2004). Isolation ideally refers not simply to

distance from a given patch, or the population it supports,

to the nearest neighboring patch or local population, but to

distance from all extant populations that might serve as

sources of colonists (Hanski, 1999). Measures of isolation also

may incorporate information on population size or the ease

with which individuals can disperse through the matrix.

Patch area is assumed to be correlated with population size,

and both in turn to be correlated with extinction risk. The

area and isolation paradigm thus assumes that the probabil-

ity of population extinction decreases as the area of a habitat

patch increases, and that the probability of patch colonization

increases as isolation decreases. If these two assumptions are

true, the dynamic metapopulation processes of extinction

and colonization can be related directly by conservation plan-

ners to the sizes and locations of patches that collectively

support metapopulations of concern.
The locations, sizes, and occupancy states of habitat

of field surveys. Estimating the relative importance of patch

area and isolation on probabilities of extinction and coloniza-

tion is challenging, however, because data on the processes

that drive extinction and colonization dynamics often are dif-

ficult to obtain. Patch occupancy, a binary state variable

describing the patch as occupied or vacant, is therefore fre-

quently used to infer local extinction and colonization proba-

bilities on the basis of logistic regression (Etienne et al., 2004),

incidence function models (Hanski, 1992, 1994; Ter Braak

et al., 1998; Vos et al., 2000), or Bayesian approaches (O’Hara

et al., 2002; Ter Braak and Etienne, 2003). These methods have

been applied successfully to a range of species, but each has

at least one of two disadvantages. First, they assume that a gi-

ven species is always detected in a patch where it is present.

Second, the methods assume that metapopulations are at

Markovian pseudo-equilibrium (Hanski, 1998; Etienne et al.,

2004), meaning that the occupancy status of each patch at

time t + 1 is dictated solely by patch status at time t (Moila-

nen, 1999; Barbraud et al., 2003).

Detection probability is recognized as a central issue in

biological inventories, reflecting the fact that resident popula-

tions are not always detected during field surveys (Bart and

Schoultz, 1984; MacKenzie et al., 2002; Moilanen, 2002; Gu

and Swihart, 2004; Pellet and Schmidt, 2005). Imperfect detec-

tion introduces bias in occupancy data because apparent ab-

sence of a population from a surveyed patch can mean either

that the patch indeed is vacant, or that the population is pres-

ent but not detected. If the patch state is recorded as occupied

in time steps t � 1 and t + 1, but is incorrectly recorded as va-

cant in time step t, that false-negative would lead to the erro-

neous conclusion that the population had been extirpated

and then subsequently the patch was recolonized, when in

reality the patch had been occupied across the time sequence.

It has been demonstrated that false absences result in overes-

timates of both extinction probabilities and dispersal abilities

of species that survive in metapopulations (Moilanen, 2002).

Partly in response to that concern, a method that allows

detection probabilities to be explicitly incorporated into meta-

population models was developed recently (MacKenzie et al.,

2003).

The second assumption of most patch occupancy models,

that the metapopulation is at pseudo-equilibrium, generally

is difficult to test (but see Moilanen, 2002); therefore, we be-

lieve it is wise to assume nothing about the equilibrium state

of the metapopulation. This assumption-free approach has

been successfully used by Erwin et al. (1998) and Moilanen

(1999), although neither study accounted for imperfect detect-

ability. In this paper, we explore new methods based on ro-

bust statistical designs that can be used to relax both the

steady-state and perfect detectability assumptions (MacKen-

zie et al., 2003, 2006). These modeling approaches are similar

to Pollock’s robust design for mark-recapture experiments,

where each patch is visited k times during each of t years (Pol-

lock, 1982). Patches are assumed to be closed (either occupied

or vacant) within years, but open between years, allowing for

colonization and extinction events to occur. At each visit,

patch occupancy is assessed, resulting in a binary detection

history of zeros (absences) and ones (presences) across multi-
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ple years. The analytic framework then explicitly includes

detection probability as a variable before estimating probabil-

ities of extinction and colonization through likelihood

maximization.

Although widely used in conservation, metapopulation

models are based on multiple simplifying assumptions that

rarely have been validated empirically. Here we evaluate the

circumstances under which the area and isolation paradigm

can serve as a tool for better understanding metapopulation

dynamics and informing conservation planning. We apply

13 different models to metapopulation occupancy data for

10 species of butterflies, amphibians, and birds. Four param-

eters – occupancy during the first year of the survey, probabil-

ity of colonization, probability of extinction, and single-visit

detection probability – are included in all models. In different

models, these parameters are either constant or time-depen-

dent. Five of the models include one or two patch-level covar-

iates: area, population size, and connectivity (the inverse of

isolation). By applying the full set of models, we examine

whether the cost of collecting data to estimate time-depen-

dent and patch-specific parameters is worthwhile in terms

of our ability to forecast changes in metapopulation occu-

pancy, the proportion of patches in which the species is pres-

ent over time. We also explore whether patch area is an

effective surrogate measure of population size. Further, we

estimate single-visit detection probabilities for each of the

10 species. This allows us to examine the potential effects

of detectability on inferences about metapopulation dynam-

ics and appropriate conservation planning for a given species.

2. Methods

Each of 10 species in our analyses had resource requirements

that were sufficiently specialized to allow spatial delineation

of patches of habitat. During the time period in which surveys

were conducted, each species also had asynchronous extinc-

tion of local populations and recolonized multiple patches of

habitat. We examined data for two species of butterflies,

Speyeria nokomis and Maculinea nausithous; two species of

amphibians, Hyla arborea (European tree frog) and Bufo cala-

mita (natterjack toad); and six species of birds, Selasphorus

platycercus (Broad-tailed Hummingbird), Picoides villosus (Hairy

Woodpecker), Troglodytes aedon (House Wren), Dendroica pete-

chia (Yellow Warbler), Melospiza melodia (Song Sparrow), and

Passerina amoena (Lazuli Bunting).

2.1. Occurrence data

S. nokomis occupies seeps, springs, and other riparian areas in

the central Great Basin (Nevada, USA) where its larval host

plant, Viola nephrophylla, grows with its adult nectar sources,

Cirsium spp. and Carduus spp. (Fleishman et al., 2002). Our

analyses included data collected from 1995 to 1998 in a net-

work of 39 patches in the Toiyabe Range (Table 1). Each patch

was visited an average of 5.3 times (SD = 1.1) per year, for a to-

tal of 827 visits. The myrmecophilous butterfly M. nausithous

occurs along the southern shore of Lake Neuchâtel, Switzer-

land. The species is associated with wet grasslands in which

both its host plant (Sanguisorba officinalis) and ant nests (Myr-

mica rubra) are present. Due to the localized nature of these
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grasslands, individuals are aggregated in 15 separate mead-

ows. The species is easy to detect with visual surveys; we vis-

ited each patch an average of 2.3 times per year (SD = 0.8)

from 1997 to 2005, for a total of 311 site visits.

The endangered species H. arborea and B. calamita are asso-

ciated with early successional wetlands in western Switzer-

land (Schmidt and Zumbach, 2005). The conspicuous calling

behavior of breeding males makes them easy to detect and

thus counts of breeding males are the preferred monitoring

technique (Heyer et al., 1994; Carlson and Edenhamn, 2000;

Pellet and Schmidt, 2005). Presence or absence of both species

was monitored in 27 patches from 2002 to 2005 (Pellet, 2005).

A total of 392 site visits was included in these analyses (Table

1). Ponds were visited an average of 3.6 times (SD = 1.9) each

year.

Bird data used in these analyses were collected from 2001

through 2004 in three adjacent mountain ranges in the cen-

tral Great Basin that have similar biogeographic and human

land-use histories, the Shoshone Mountains, Toiyabe Range,

and Toquima Range. Data from 12 canyons are included in

the analyses presented here. We restricted our analysis to

species that are largely or entirely restricted to riparian habi-

tats (Dobkin and Wilcox, 1986), with intermediate patch occu-

pancy (20–80%) across years and at least one apparent

turnover event (population extirpation or colonization) each

year. Data for 144 site visits were included in our analyses

(Table 1). Data collection used established techniques that

are believed to detect species presence reliably and allow

assessment of distributional trends (Bibby et al., 2000). We

provide an abbreviated description here; these methods have

been described in detail previously (Dobkin and Wilcox, 1986;

Mac Nally et al., 2004).

Birds were sampled during the breeding season (late May

through June) using two or three 75-m variable-radius point

counts per hundred meters of vertical elevation change. Most

point centers were at least 350 m apart. Point counts are an

effective method of sampling birds in riparian areas in the

Great Basin (Dobkin and Rich, 1998). Within a canyon, points

were located in each of the dominant vegetation types (e.g.,

aspen, willow, mixed pinyon-juniper woodland, wet meadow,

sagebrush). During each visit, all birds actively using terres-

trial habitat within the point were recorded by sight or sound.

Point counts were conducted only in calm weather, and none

were conducted >3.5 h after dawn. Each point was visited

three times per year for 5 min per visit.

2.2. Patch-specific covariates

For butterflies, habitat patches were delineated on the basis of

land cover and presence of larval host plants. Annual popula-

tion sizes for each patch, defined as the number of adults in

the patch in a given year, were estimated as the maximum

number of adults detected in the patch on any day in that

year.

Habitat patches for amphibians were defined as breeding

ponds, and patch area was estimated as the surface area of

the pond. Annual population sizes for each patch were esti-

mated from the maximum number of calling males heard

on any one night in that year (Carlson and Edenhamn, 2000;

Schmidt and Pellet, 2005).
For birds, patch area was estimated as the length of the

riparian corridor within each canyon; the width of the corri-

dor rarely exceeded 100 m. Habitat for riparian-obligate birds

in this system typically is confined to canyon bottoms, which

are separated by steep uplands with limited resources. An-

nual population sizes for each patch were estimated as the

maximum number of individuals detected on any given day

in that year.

For all species, the average population size for each patch

across the multiple-year sampling period was estimated as

the mean annual population size for the patch.

In a metapopulation context, connectivity – the inverse of

isolation – is a patch-specific parameter that typically refers

to the number of immigrants arriving to a patch from all other

patches in a network (Hanski, 1999). Measures of connectivity

incorporate both attributes of the landscape in which the

metapopulation is embedded and attributes of the focal

species. We computed connectivity of each patch as

connectivityi ¼
P

i 6¼je
�adij N j, where Nj is population size of

patch j, dij the distance between patches i and j, and 1/a is

the mean dispersal distance of the focal species (see Hanski,

1999, p. 217). Other measures of connectivity have replaced

population size with either patch area or a binary occupancy

variable (Hanski, 1994; Vos et al., 2000). We included popula-

tion size explicitly because we believed this measure is more

appropriate to predict the number of migrants between

patches.

The mean dispersal distance 1/a for each species was esti-

mated using all available data. Mark-recapture data on S. nok-

omis detected dispersal distances up to 4 km (Fleishman et al.,

2002). Mean dispersal distance, however, was approximately

600 m. For M. nausithous, mean dispersal distance is believed

to be several hundred meters (Nowicki et al., 2005). We esti-

mated the mean dispersal distance for both butterflies as

600 m.

Most recorded dispersal distances of H. arborea (Vos et al.,

2000) are less than 1.5 km. We estimated mean dispersal dis-

tance for H. arborea as 1 km. B. calamita is known to have dis-

persal distances up to 2 km (Sinsch, 1997), but reliable

estimates of mean dispersal distance are not available. There-

fore, we estimated the mean dispersal distance for this spe-

cies as 1 km.

Mean dispersal distance for birds was estimated to be

10 km, approximately the mean distance among neighboring

patches. Few data on among-breeding season dispersal dis-

tances are available for most species of birds in North Amer-

ica (Walters, 2000), especially for relatively small-bodied birds

such as those in our study.

2.3. Data analysis

We developed a set of 13 candidate models of metapopulation

dynamics that included four parameters with varying degrees

of complexity (Table 2). All models were applied to each of our

10 sets of occupancy data. This process allowed us to examine

how the accuracy of predictions of metapopulation occu-

pancy is affected by use of constant versus time-dependent

parameters and by inclusion of patch-level covariates. Use

of these models also facilitated exploration of whether patch

area is an effective surrogate measure of population size. We



Table 2 – Candidate models of metapopulation dynamics

Model Model function

1 w(year1)c(.)e(.)p(..)

2 w(year1)c(t)e(.)p(..)

3 w(year1)c(.)e(t)p(..)

4 w(year1)c(t)e(t)p(..)

5 w(year1)c(.)e(.)p(t.)

6 w(year1)c(t)e(.)p(t.)

7 w(year1)c(.)e(t)p(t.)

8 w(year1)c(t)e(t)p(t.)

9 w(year1)c(connectivity)e(.)p(..)

10 w(year1)c(.)e(patch area)p(..)

11 w(year1)c(.)e(population size)p(..)

12 w(year1)c(connectivity)e(patch area)p(..)

13 w(year1)c(connectivity)e(population size)p(..)

w(year1) is the occupancy during the first year of the survey, c(.) the

probability of colonization, e(.) the probability of extinction, and

p(..) is the single-visit detection probability of the species. Potential

factors affecting colonization and extinction probabilities are

effective connectivity, patch area, and population size.
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used a multiple-season occupancy modeling framework (as

implemented in PRESENCE, available for download from

www.proteus.co.nz) that accounts for detection probability

(MacKenzie et al., 2003, 2006). All models had the form

w(year1)c(.)e(.)p(..), where w(year1) is occupancy (the propor-

tion of patches in which the species was present) during the

first year of the survey, c(.) is the probability of colonization,

e(.) is the probability of extinction, and p(..) is the single-visit

detection probability of the species (Fig. 1). The covariates

for each parameter are indicated within parentheses. Dots

indicate constants, and t indicates a time-dependent (year-

dependent) parameter. Patch area and population size were

included as covariates of extinction probability, and connec-

tivity was included as a covariate of colonization probability.

We first constructed a set of eight models in which each

parameter – occupancy during the first year of the survey,

probability of colonization, probability of extinction, and sin-
year 1 year 2 year t

ψt pt,k

γt εt

1 2 k… 1 2 k… 1 2 k…

…

Fig. 1 – Illustration of the framework for occupancy

modeling (adapted from Bailey et al. (2004)). During each

year t, each patch is visited k times. Probabilities of

colonization (c) and extinction (e) are estimated between

years, whereas probabilities of patch occupancy (w) and

detection (p) are estimated within each year.
gle-visit detection probability – was either constant or time-

dependent in every possible combination (models 1–8, Table

2). In model 1, for example, probability of extinction was as-

sumed to be constant over time [e(.)], whereas in model 3

the probability of extinction was assumed to change each

year [e(t)]. We did not construct models with survey-specific

detection probabilities, because these models would have in-

cluded far more parameters than reasonable given our data.

Model selection on this first set of eight models indicated that

detection probability consistently was modeled best as a con-

stant. We thus set detection probability as constant in five

subsequent models. These five models included either one

or two patch-level covariates in every possible combination.

Two parameters (patch area and population size) covaried

with extinction, and one parameter (connectivity) covaried

with colonization. Models 9, 10, and 11 included a covariate

for either extinction or colonization, whereas models 12 and

13 contained a covariate for both extinction and colonization

(Table 2).

As with capture–recapture methods, we derived model

likelihood from species detection histories (MacKenzie et al.,

2002). A detection history for a given patch documents

whether a species was observed (1) or not observed (0) during

each visit. A within-year detection history of ‘‘101,’’ for exam-

ple, would indicate that the species was detected on the first

visit, undetected on the second visit, and detected on the

third visit. We can represent the probability of such a history

as wp(1 � p)p, where w is the probability of occupancy and p is

the probability of detection. This model-likelihood approach

then can be extended to interannual parameters such as col-

onization (c) and extinction (e) (Fig. 1).

We used an information theoretic approach to model

selection (Burnham and Anderson, 2002; Johnson and Om-

land, 2004). As recommended when the ratio between sample

size and number of model parameters is less than 40, we de-

rived the Akaike Information Criterion (AICc) for small sam-

ples (Burnham and Anderson, 2002) from the �2log-

likelihoods (�2LL). AICc model weights then were derived

and models ranked accordingly. Models with lowest AICc

were considered most parsimonious, and pairs of models

with an absolute difference in AICc of less than 2 were con-

sidered equally good (Burnham and Anderson, 2002). Because

there is currently no adequate method for assessing absolute

model fit when models include detection probability (Mac-

Kenzie et al., 2006, p. 109), our model selection procedure only

could rank models and evaluate their relative fit.

We estimated single-visit detection probabilities for each

of the ten species to examine the potential effects of detect-

ability on inferences about its metapopulation dynamics

and appropriate conservation planning for the species. We

estimated detection probabilities of species by averaging

across all models in which detection probabilities were not

time-dependent (thus excluding models 5 and 7). Given spe-

cies detection probability, we then calculated the minimum

number of visits necessary to be 95% confident that a species

was absent from a site in a given time step as Nmin = log(0.05)/

log(1 � p), where p is the model-averaged detection probabil-

ity (Pellet and Schmidt, 2005).

If colonization is indeed best modeled with connectivity as

a patch-level covariate, it is reasonable to expect that model
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fit will be higher when the value for connectivity is calculated

with the true mean dispersal distance for the species. Be-

cause this value was either unknown or imprecise, we created

for each species a new set of models based on the best model

that included connectivity as a covariate (model 9, 12, or 13).

Ten new connectivity models, each with different dispersal

distances (from 0.2 to 2 km in 0.2 km increments for butter-

flies and amphibians, and from 2 to 20 km in 2 km increments

for birds), were calculated for each species. Using the model

selection procedure described above, we calculated model

weights. We assumed that higher model weights (and their

associated estimates of dispersal distance) more accurately

reflected the true ability of the species to disperse and to

recolonize patches.

3. Results
For every species, changes in metapopulation occupancy

among years were represented best by models with patch-

specific extinction probabilities, colonization probabilities,

or both (Table 3). Averaged across species, the best model in-

cluded population size as a covariate of extinction probability,

with all other parameters constant. The second-best model

included population size as a covariate of extinction probabil-

ity and connectivity as a covariate of colonization probability.

The performance of the simplest model, in which probabili-

ties of colonization, extinction, and single-visit detection

were assumed to be constant, ranked third when averaged

across all species (Table 4).

For all species of butterflies and amphibians, the two mod-

els that included population size as a covariate of extinction

probability (models 11 and 13, negative correlation) accounted

for more than 94% of the summed weights of all models, per-

forming much better than patch area as a covariate in pre-

dicting extinction rates. For all six species of birds, models

that included population size as a covariate predicted extinc-

tion rate equally well or better than models that included

patch area as a covariate (Table 3). Correlations between

patch area and population size were variable across species

and taxonomic groups, ranging from 0.07 for the bird P. villo-

sus and 0.15 for the butterfly S. nokomis, to 0.79 and 0.87 for

the birds D. petechia and M. melodia, respectively.

Predictions of colonization probability were improved by

including connectivity (positively correlated with probability

of colonization) as a patch covariate for only 3 of 10 species

(the butterfly M. nausithous and the birds M. melodia and P.

amoena). For the other species, the DAICc between model 9

(constant probability of extinction and single-visit detection,

connectivity covaries with probability of colonization) and

model 1 (constant probability of extinction, detection, and

colonization) was less than 2, indicating that patch-level con-

nectivity conferred little advantage in predicting colonization

events compared with models in which colonization probabil-

ity was assumed to be constant.

For most species, modifying mean dispersal distance (1/a)

in the best model changed the model likelihood only slightly

(Fig. 2). For both species of butterflies, however, we identified

a clear relationship between dispersal distance and model fit.

For M. nausithous, the best model of colonization included a
mean dispersal distance of 1400 m, whereas for S. nokomis,

both relatively short (200 m) and long (>2000 m) dispersal dis-

tances were strongly associated with probability of coloniza-

tion (Fig. 2). For both amphibians, but especially B. calamita,

dispersal distance was inversely correlated with model fit,

indicating stronger support for short range dispersal

(<400 m). We did not detect a clear correlation between dis-

persal distance and model fit for birds; for all six species,

the 10 models had similar weights.

In general, model selection indicated that probabilities of

extinction and colonization were better explained by models

that included constant probabilities of detection than by

models that included time-dependent probabilities of detec-

tion (models 5–8 in Table 4). These results suggest that, as

we had believed, survey intensity for all species was roughly

constant during the monitoring periods that informed our

analyses. Single-visit detection probabilities were imperfect

for all species, ranging from 23% likelihood of detection

(P. villosus) to 81% (D. petechia and M. melodia). Mean detection

probabilities within taxonomic groups were 60% for butter-

flies, 56% for amphibians, and 66% for birds. For three species,

M. nausithous, B. calamita, and P. villosus, annual survey efforts

were insufficient to provide 95% confidence that the species

was absent from a given patch in any given year, suggesting

that use of occupancy models allowing for imperfect detect-

ability was especially appropriate to describe the metapopu-

lation dynamics of these species (Table 5).

4. Discussion
Although our set of 10 species covered a wide range of life his-

tories and ecological requirements, we obtained consistent

results about the best predictors of changes in metapopula-

tion occupancy among years. Overall, our best models in-

cluded patch-specific extinction probabilities and, to a lesser

extent, patch-specific colonization probabilities rather than

probabilities that were constant or time-dependent. Our anal-

yses suggest that the cost of obtaining a measure of popula-

tion size for patch is worthwhile in terms of increasing

ability to predict occupancy patterns over time. At least some

measures of connectivity, however, may not improve the

accuracy of predictions relative to models that assume a con-

stant probability of colonization. An important caveat is that

models including time-dependent parameters were heavily

penalized in the model selection process (computation of

the AICc) because they included a large number of parame-

ters. Accordingly, selection of the most parsimonious model

may serve to mask time-dependent patterns.

Extinction probabilities for eight species were better mod-

eled as a function of population size than as a function of

patch area. This may reflect the fact that population size

and extinction probability usually are correlated negatively

due to environmental and demographic stochasticity (Boyce,

1992; Inchausti and Halley, 2003). We would expect patch area

to predict extinction rates equally well or better than popula-

tion size if patch area reflected carrying capacity. For most of

our species, however, the correlation between population size

and patch area was weak. Use of patch area as a surrogate for

population size is appealing because patch area is more easily



Table 3 – Model selection according to AICc for each species

Species Model Model �2LL n K AICc w

Speyeria nokomis 11 w(year1)c(.)e(population size)p(..) 964.6 39 5 976.5 0.70

13 w(year1)c(connectivity)e(population size)p(..) 963.5 39 6 978.2 0.30

5 w(year1)c(.)e(.)p(t.) 973.4 39 7 991.0 0.00

10 w(year1)c(.)e(patch area)p(..) 981.5 39 5 993.3 0.00

1 w(year1)c(.)e(.)p(..) 984.3 39 4 993.4 0.00

9 w(year1)c(connectivity)e(.)p(..) 984.1 39 5 995.9 0.00

12 w(year1)c(connectivity)e(patch area)p(..) 981.3 39 6 996.0 0.00

3 w(year1)c(.)e(t)p(..) 982.2 39 6 996.8 0.00

6 w(year1)c(t)e(.)p(t.) 973.2 39 9 997.4 0.00

7 w(year1)c(.)e(t)p(t.) 973.3 39 9 997.5 0.00

2 w(year1)c(t)e(.)p(..) 984.1 39 6 998.7 0.00

4 w(year1)c(t)e(t)p(..) 981.7 39 8 1002.5 0.00

8 w(year1)c(t)e(t)p(t.) 973.1 39 11 1004.9 0.00

Maculinea nausithous 13 w(year1)c(connectivity)e(population size)p(..) 297.6 15 6 320.1 0.80

11 w(year1)c(.)e(population size)p(..) 306.9 15 5 323.6 0.14

5 w(year1)c(.)e(.)p(t.) 295.2 15 7 325.2 0.06

9 w(year1)c(connectivity)e(.)p(..) 323.0 15 5 339.7 0.00

7 w(year1)c(.)e(t)p(t.) 285.7 15 9 339.7 0.00

1 w(year1)c(.)e(.)p(..) 328.0 15 4 340.0 0.00

12 w(year1)c(connectivity)e(patch area)p(..) 318.1 15 6 340.6 0.00

6 w(year1)c(t)e(.)p(t.) 288.1 15 9 342.1 0.00

2 w(year1)c(t)e(.)p(..) 322.3 15 6 344.8 0.00

3 w(year1)c(.)e(t)p(..) 329.8 15 6 352.3 0.00

4 w(year1)c(t)e(t)p(..) 342.2 15 8 382.2 0.00

8 w(year1)c(t)e(t)p(t.) 279.2 15 11 389.2 0.00

10 w(year1)c(.)e(patch area)p(..) 373.2 15 5 389.9 0.00

Bufo calamita 11 w(year1)c(.)e(population size)p(..) 368.7 27 5 381.5 0.82

13 w(year1)c(connectivity)e(population size)p(..) 368.4 27 6 384.6 0.17

10 w(year1)c(.)e(patch area)p(..) 382.1 27 5 395.0 0.00

1 w(year1)c(.)e(.)p(..) 386.2 27 4 396.0 0.00

12 w(year1)c(connectivity)e(patch area)p(..) 381.6 27 6 397.8 0.00

9 w(year1)c(connectivity)e(.)p(..) 385.9 27 5 398.7 0.00

2 w(year1)c(t)e(.)p(..) 383.9 27 6 400.1 0.00

3 w(year1)c(.)e(t)p(..) 386.1 27 6 402.3 0.00

5 w(year1)c(.)e(.)p(t.) 385.9 27 7 405.8 0.00

4 w(year1)c(t)e(t)p(..) 383.7 27 8 407.7 0.00

6 w(year1)c(t)e(.)p(t.) 383.4 27 9 412.0 0.00

7 w(year1)c(.)e(t)p(t.) 385.8 27 9 414.4 0.00

8 w(year1)c(t)e(t)p(t.) 382.8 27 11 422.4 0.00

Hyla arborea 11 w(year1)c(.)e(population size)p(..) 427.0 27 5 439.9 0.82

13 w(year1)c(connectivity)e(population size)p(..) 426.7 27 6 442.9 0.18

1 w(year1)c(.)e(.)p(..) 451.0 27 4 460.8 0.00

9 w(year1)c(connectivity)e(.)p(..) 450.3 27 5 463.2 0.00

10 w(year1)c(.)e(patch area)p(..) 451.0 27 5 463.9 0.00

3 w(year1)c(.)e(t)p(..) 448.7 27 6 464.9 0.00

2 w(year1)c(t)e(.)p(..) 450.3 27 6 466.5 0.00

12 w(year1)c(connectivity)e(patch area)p(..) 450.3 27 6 466.5 0.00

5 w(year1)c(.)e(.)p(t.) 449.4 27 7 469.3 0.00

4 w(year1)c(t)e(t)p(..) 448.1 27 8 472.1 0.00

7 w(year1)c(.)e(t)p(t.) 446.9 27 9 475.5 0.00

6 w(year1)c(t)e(.)p(t.) 448.8 27 9 477.4 0.00

8 w(year1)c(t)e(t)p(t.) 446.4 27 11 486.0 0.00

Selasphorus platycercus 11 w(year1)c(.)e(population size)p(..) 134.4 12 5 154.4 0.87

10 w(year1)c(.)e(patch area)p(..) 138.3 12 5 158.3 0.12

1 w(year1)c(.)e(.)p(..) 153.3 12 4 167.0 0.00

12 w(year1)c(connectivity)e(patch area)p(..) 138.3 12 6 167.1 0.00

2 w(year1)c(t)e(.)p(..) 142.6 12 6 171.4 0.00

9 w(year1)c(connectivity)e(.)p(..) 153.3 12 5 173.3 0.00

3 w(year1)c(.)e(t)p(..) 149.6 12 6 178.4 0.00

13 w(year1)c(connectivity)e(population size)p(..) 149.8 12 6 178.6 0.00

5 w(year1)c(.)e(.)p(t.) 152.6 12 7 194.6 0.00

4 w(year1)c(t)e(t)p(..) 139.0 12 8 203.0 0.00

(continued on next page)
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Table 3 – continued

Species Model Model �2LL n K AICc w

6 w(year1)c(t)e(.)p(t.) 141.8 12 9 249.8 0.00

7 w(year1)c(.)e(t)p(t.) 148.8 12 9 256.8 0.00

Picoides villosus 11 w(year1)c(.)e(population size)p(..) 84.9 12 5 104.9 0.76

1 w(year1)c(.)e(.)p(..) 94.4 12 4 108.1 0.15

9 w(year1)c(connectivity)e(.)p(..) 91.0 12 5 111.0 0.04

10 w(year1)c(.)e(patch area)p(..) 91.5 12 5 111.5 0.03

13 w(year1)c(connectivity)e(population size)p(..) 83.6 12 6 112.4 0.02

12 w(year1)c(connectivity)e(patch area)p(..) 91.5 12 6 120.3 0.00

2 w(year1)c(t)e(.)p(..) 91.9 12 6 120.7 0.00

3 w(year1)c(.)e(t)p(..) 93.4 12 6 122.2 0.00

5 w(year1)c(.)e(.)p(t.) 92.3 12 7 134.3 0.00

4 w(year1)c(t)e(t)p(..) 95.2 12 8 159.2 0.00

7 w(year1)c(.)e(t)p(t.) 91.1 12 9 199.1 0.00

6 w(year1)c(t)e(.)p(t.) 95.4 12 9 203.4 0.00

Troglodytes aedon 10 w(year1)c(.)e(patch area)p(..) 93.7 12 5 113.7 0.43

11 w(year1)c(.)e(population size)p(..) 93.7 12 5 113.7 0.43

13 w(year1)c(connectivity)e(population size)p(..) 88.2 12 6 117.0 0.08

1 w(year1)c(.)e(.)p(..) 104.9 12 4 118.6 0.04

9 w(year1)c(connectivity)e(.)p(..) 99.2 12 5 119.2 0.03

3 w(year1)c(.)e(t)p(..) 101.6 12 6 130.4 0.00

12 w(year1)c(connectivity)e(patch area)p(..) 103.2 12 6 132.0 0.00

2 w(year1)c(t)e(.)p(..) 104.3 12 6 133.1 0.00

5 w(year1)c(.)e(.)p(t.) 101.7 12 7 143.7 0.00

4 w(year1)c(t)e(t)p(..) 100.9 12 8 164.9 0.00

7 w(year1)c(.)e(t)p(t.) 99.2 12 9 207.2 0.00

6 w(year1)c(t)e(.)p(t.) 101.1 12 9 209.1 0.00

Dendroica petechia 10 w(year1)c(.)e(patch area)p(..) 93.8 12 5 113.8 0.49

11 w(year1)c(.)e(population size)p(..) 93.8 12 5 113.8 0.49

12 w(year1)c(connectivity)e(patch area)p(..) 92.7 12 6 121.5 0.01

13 w(year1)c(connectivity)e(population size)p(..) 92.7 12 6 121.5 0.01

1 w(year1)c(.)e(.)p(..) 116.7 12 4 130.5 0.00

9 w(year1)c(connectivity)e(.)p(..) 115.3 12 5 135.3 0.00

2 w(year1)c(t)e(.)p(..) 111.1 12 6 139.9 0.00

3 w(year1)c(.)e(t)p(..) 113.0 12 6 141.8 0.00

5 w(year1)c(.)e(.)p(t.) 110.9 12 7 152.9 0.00

4 w(year1)c(t)e(t)p(..) 107.4 12 8 171.4 0.00

6 w(year1)c(t)e(.)p(t.) 105.2 12 9 213.2 0.00

7 w(year1)c(.)e(t)p(t.) 107.1 12 9 215.1 0.00

Melospiza melodia 9 w(year1)c(connectivity)e(.)p(..) 112.7 12 5 132.7 0.46

1 w(year1)c(.)e(.)p(..) 119.4 12 4 133.1 0.38

11 w(year1)c(.)e(population size)p(..) 116.0 12 5 136.0 0.09

10 w(year1)c(.)e(patch area)p(..) 117.4 12 5 137.4 0.04

13 w(year1)c(connectivity)e(population size)p(..) 109.5 12 6 138.3 0.03

3 w(year1)c(.)e(t)p(..) 113.5 12 6 142.3 0.00

2 w(year1)c(t)e(.)p(..) 116.1 12 6 144.9 0.00

5 w(year1)c(.)e(.)p(t.) 106.7 12 7 148.7 0.00

12 w(year1)c(connectivity)e(patch area)p(..) 124.1 12 6 152.9 0.00

4 w(year1)c(t)e(t)p(..) 110.0 12 8 174.0 0.00

7 w(year1)c(.)e(t)p(t.) 104.7 12 9 212.7 0.00

6 w(year1)c(t)e(.)p(t.) 105.6 12 9 213.6 0.00

Passerina amoena 13 w(year1)c(connectivity)e(population size)p(..) 91.2 12 6 120.0 0.70

9 w(year1)c(connectivity)e(.)p(..) 101.9 12 5 121.9 0.27

12 w(year1)c(connectivity)e(patch area)p(..) 98.2 12 6 127.0 0.02

11 w(year1)c(.)e(population size)p(..) 109.0 12 5 129.0 0.01

10 w(year1)c(.)e(patch area)p(..) 109.8 12 5 129.8 0.01

1 w(year1)c(.)e(.)p(..) 119.9 12 4 133.6 0.00

3 w(year1)c(.)e(t)p(..) 118.2 12 6 147.0 0.00

2 w(year1)c(t)e(.)p(..) 119.0 12 6 147.8 0.00

5 w(year1)c(.)e(.)p(t.) 110.4 12 7 152.4 0.00

4 w(year1)c(t)e(t)p(..) 117.2 12 8 181.2 0.00
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Table 3 – continued

Species Model Model �2LL n K AICc w

6 w(year1)c(t)e(.)p(t.) 109.2 12 9 217.2 0.00

7 w(year1)c(.)e(t)p(t.) 109.3 12 9 217.3 0.00

�2LL is the �2log-likelihood of the model, n the sample size (number of patches), K the number of parameters included in the model, and w is

the Akaike weight of the model. The sum of all model weights in a set of candidate models is 1. The higher the weight, the more parsimonious

the model. Sample size for bird data did not allow computation of the most highly parameterized model [model 8, w(year1)c(t)e(t)p(t.)], which

had 11 parameters.
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measured in the field (Moilanen, 2002), but our results do not

support the use of patch area as a surrogate of population

size. We acknowledge that our estimates of population size

likely were biased to some extent because our estimates were

based on counts rather than on field methods that account for

imperfect detection of individuals (e.g., distance sampling or

capture–recapture). We also recognize that not only average

population size but temporal variance in population size

might influence probability of extinction.

In most cases, adding connectivity as a patch-specific

covariate did not improve predictions of colonization; a con-

stant colonization probability was equally effective. We sus-

pect this is because the underlying assumptions of our

metric of connectivity – a widely used metric (Hanski, 1999)

– are unlikely to match real life situations. That metric in-

cluded distances between patches, population size, and mean

dispersal distance (estimated from mark-recapture data). We

did not attempt to estimate the ability of the species to use

the matrix separating patches of habitat and density-inde-

pendent movements among patches, both of which often af-

fect dispersal rates. Other measures of connectivity, such as

distance to closest neighboring patch or population, or sizes

of individual populations within a given radius from each

patch, also may be good fits to empirical data (Schmidt and

Pellet, 2005). In addition, there is considerable evidence that

patch quality affects colonization and extinction in taxo-

nomic groups including butterflies (Dennis and Eales, 1999;

Fleishman et al., 2002), amphibians (Sjögren-Gulve and Ray,
Table 4 – Mean ranks for each model, averaged across all
species

Model Mean model
rank (SD)

11 w(year1)c(.)e(population size)p(..) 1.8 (1.0)

13 w(year1)c(connectivity)e

(population size)p(..)

3.3 (2.2)

1 w(year1)c(.)e(.)p(..) 4.0 (1.5)

10 w(year1)c(.)e(patch area)p(..) 4.2 (3.4)

9 w(year1)c(connectivity)e(.)p(..) 4.3 (1.8)

12 w(year1)c(connectivity)e

(patch area)p(..)

5.9 (2.1)

3 w(year1)c(.)e(t)p(..) 7.4 (1.3)

2 w(year1)c(t)e(.)p(..) 7.6 (1.6)

5 w(year1)c(.)e(.)p(t.) 7.7 (2.5)

4 w(year1)c(t)e(t)p(..) 10.3 (0.7)

7 w(year1)c(.)e(t)p(tt.) 10.7 (2.1)

6 w(year1)c(t)e(.)p(t.) 10.9 (1.4)

8 w(year1)c(t)e(t)p(t.) 12.8 (0.5)
1996; Pope et al., 2000; Vos et al., 2000), birds (Erwin et al.,

1998), and mammals (Pita et al., 2007). This may be especially

true for relatively mobile species, such as migratory birds that

return to the same patch networks every year. We did not at-

tempt to quantify or include habitat quality in our models be-

cause our purpose was not to evaluate the relative

importance of patch geometry and habitat quality, but to eval-

uate whether area, population size, and isolation were more

effective predictors of patch occupancy than constant or

time-dependent parameters.

Although connectivity did not improve predictions of colo-

nization rates compared to a constant colonization probabil-

ity, we identified an effect of dispersal distance on model

weight for butterflies and amphibians. For the butterfly

M. nausithous, we found a bell-shaped effect of dispersal dis-

tance on model weight, indicating that colonization data were

best explained by intermediate-range dispersal (�1400 m);

this distance was larger than reported in the literature (Now-

icki et al., 2005). The discrepancy might indicate that individ-

uals residing in our patch network, where the mean distance

to the closest patch is 1.8 km, must travel longer distances to

colonize a patch. For S. nokomis, by contrast, we found an

apparent bimodal effect of dispersal distance. This likely

reflects that in the metapopulation we studied, the distance

among separate canyons typically is much greater than the

distance among patches of habitat within an individual can-

yon (Table 1), and the uplands between canyons present topo-

graphic and ecological barriers to dispersal. It appeared that

the amphibians in our analyses (B. calamita and H. arborea)

need not disperse relatively far in order to recolonize the

ponds that serve as their habitat, which is consistent with

previous work by Schmidt and Pellet (2005). The effect was

extremely strong for B. calamita.

For birds, however, we did not detect a strong relationship

between dispersal distances and colonization rates. All spe-

cies included in our analyses, with the exception of P. villosus

(a resident of the Great Basin), are migrants that can travel

hundreds of kilometers between nesting and wintering habi-

tats. When these species return to breed in the Great Basin,

their probability of colonizing a patch that was vacant the

previous year may depend less on the location of the patch

or its isolation from other patches than on factors that we

did not include in our analyses, such as total habitat area

within a given region and habitat quality.

If survey intensity is inadequate to detect all true pres-

ences, false absences erroneously may be interpreted as extir-

pations. As a result, use of presence/absence data to examine

metapopulation dynamics may overestimate both extinction

rates and colonization rates. Our monitoring protocols



0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000

Hyla arborea

0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000

Bufo calamita

0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000

Maculinea nausithous

0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000

Speyeria nokomis

0.0

0.2

0.4

0.6

200 400 600 800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Selasphorus platycercus

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Picoides villosus

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Troglodytes aedon

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Passerina amoena

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Melospiza melodia

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Dendroica petechia

0.0

0.2

0.4

0.6

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Mean dispersal distance (m)

M
od

el
 A

ka
ik

e 
w

ei
gh

t 

Fig. 2 – Model weight as a function of dispersal distance in the best model that included connectivity as a covariate of

probability of colonization.
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generally were adequate to determine patch occupancy. For

one species in each of the three taxonomic groups, however,

survey intensity was insufficient to detect absences in a given
year correctly. This emphasizes the difficulty of designing a

protocol to survey multiple species simultaneously and accu-

rately (Pellet and Schmidt, 2005).



Table 5 – Single-visit detection probability, sampling effort required to avoid false absences (95% certainty), and actual
sampling effort for each species

Species Detection
probability (%)

Required number of
visits per site per year

Mean number of
visits per year (SD)

Sufficient sampling effort?

Speyeria nokomis 45 5 5.3 (1.1) Yes

Maculinea nausithous 75 3 2.3 (0.8) No

Bufo calamita 43 6 3.6 (1.9) No

Hyla arborea 70 3 3.6 (1.9) Yes

Selasphorus platycercus 66 3 3.0 (0.0) Yes

Picoides villosus 23 12 3.0 (0.0) No

Troglodytes aedon 75 3 3.0 (0.0) Yes

Dendroica petechia 81 2 3.0 (0.0) Yes

Melospiza melodia 81 2 3.0 (0.0) Yes

Passerina amoena 71 3 3.0 (0.0) Yes
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The butterfly M. nausithous was relatively easy to detect

(75% detection probability per visit if present), but absences

may not have been recorded because the number of visits

was low. Detectability was lower for S. nokomis (45%), but

the number of visits per patch was sufficient to be 95% confi-

dent that apparent patch-level absences were true absences.

The low detection probability for this species may reflect stag-

gered emergence (up to several weeks) among patches in

which microclimates are different, or the typically cryptic

movements of females.

Average detection probabilities across all years for

amphibians were variable. Because H. arborea had a detection

probability of 70% on each visit, the monitoring protocol was

sufficient to detect true absences each year with 95% confi-

dence. B. calamita, however, has a somewhat more discrete

calling behavior (Pellet and Schmidt, 2005), and therefore

was less likely to be detected when present (43%). Its true dis-

tribution may not have been identified correctly during our

surveys. These results are concordant with Pellet and

Schmidt (2005) and support the use of occupancy models that

allow for imperfect detection probabilities when estimating

both occupancy and turnover. Our work thus demonstrates

that imperfect detection of occupancy patterns can lead to

erroneous inferences.

Three surveys are considered sufficient to determine

which species of birds are present at point count locations

(Buckland et al., 2001; Siegel et al., 2001); in our work, spe-

cies accumulation curves for birds at multiple spatial scales

generally approached an asymptote before the third round

of surveys (Betrus, 2002). Detection probabilities for birds

were above 66% for all but one species, P. villosus (23%). This

low value may be due to the fact that this woodpecker

rarely uses territorial vocalization and primarily is detected

when drumming, a behavior that is less frequent than is

vocalization in our other study species. Again, although

our monitoring protocol appears adequate to detect most

species accurately, it may not be sufficient to detect all

species.

As other workers have suggested (Singer and Thomas,

1996; Thomas et al., 1996; Boughton, 1999), the solid mathe-

matical framework that has been the foundation of metapop-

ulation theory should be expanded to account for parameters

other than patch size and location. Our data suggest that area

often is an inadequate surrogate measure of population size,
therefore is less effective than population size for predicting

extinction of patches in a metapopulation. Our work indicates

that when possible, monitoring protocols intended to track

metapopulation dynamics should include a measure of popu-

lation size in addition to patch area. We also found that the

traditional metric for isolation (connectivity) did not perform

well in predicting probabilities of patch colonization. This

finding adds further support for the recommendation that,

in most cases, other parameters (most appropriately, habitat

quality parameters) should be measured and included in

metapopulation models whenever feasible to predict ade-

quately long-term persistence of species of conservation con-

cern. For most if not all taxonomic groups, conservation

planners should be aware of the potential limitations of meta-

population models that are based only on patch area and

isolation.
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Akçakaya, H.R., Burgman, M.A., Kindvall, O., Wood, C.C., Sjögren-
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